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For a positive measure IJ. on the unit circle (r) in the complex plane, m points
Zj off rand m positive numbers A), j = 1,2, ... , m, we investigate the asymptotic
behavior of orthonormal polynomials <Pn(z) corresponding to dIJ./2-rr +
[j~ I A /)", where liz denotes the unit measure supported at point z. Our main
result is the relative asymptotics of <Pn<z) with respect to the orthonormal
polynomial corresponding to dIJ./(2-rr) off and on r. (Co 1994 Academic Press. Inc.

1. INTRODUCTION

Let J.L be a finite positive measure with an infinite set as support on the
unit circle r:= {z E CI Izi = 1}. Such a measure can be represented by a
nondecreasing function J.L on [0, 27T). Denote by!J'1n the set of polynomials
of degree at most n. Let CPn(z) = KnZ n + ... E!J'1n (K n > 0) be the nth
orthonormal polynomial corresponding to J.L/(27T) on r, i.e.,

k = 0,1, ... , n, z = e l6

Suppose ZI' Z2"'" zm are m fixed points outside r. For m pOSItIve
numbers AI' A 2 ,··., Am' construct /I = J.L/(27T) + Ej~lA/\, where 8z
denotes the (Dirac delta) unit measure supported at point z. Let 4>n(z) =

'Ynzn + ... E!J'1n (oYn > 0) be the (unique) nth orthonormal polynomial
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corresponding to v on r u {Z l' Z 2' ... , Zm}, i.e.,

55

k = 0,1, ... , n, Z = e i8
•

Note that both cfJn(z) and Yn depend on A j , j = 1,2, ... , m, although this
dependence is not explicitly given in our notation.

The purpose of this paper is to study the asymptotic behavior of cfJn(z)
off and on r under fairly mild assumptions on M. The asymptotics of
'Pn(z) has been investigated extensively (see, for example, [3, 5, 10, 15, 17]).
To take this advantage in our study of cfJn(z), we compare cfJ)z) with
'P/z) in the form of relative asymptotics [11]; i.e., we investigate
cfJn( z)/ 'Pn(z),

For measures supported on the real line R, the comparison of orthonor­
mal polynomials corresponding to measures differed by a discrete part (on
R) has been studied and used in Nevai's monograph [13] (especially, see
Thm. 25 and 26 on p. 136 in [13]). More recently, asymptotics of orthogo­
nal polynomials (or the L p extremal monic polynomials) corresponding to
measure (on C) with discrete part off a curve or an arc in the complex
plane (under Szego's condition on the measure M) have been considered
by Kalyagin [7], Kaliaguine [6] and Kaliaguine and Benzine [8]. Here we
take a nice curve, the unit circle, and relax the assumption on the
measure. The special case when m = 1 has been studied by Cachafeiro
and Marcellan. Some of our results have been established already by
Cachafeiro and Marcellan ([1, 2]) for that case. Our particular interest in
the unit circle case lies in its potential application to rational approxima­
tion.

The main results are stated in Section 2, and their proofs are given in
Section 4. Section 3 is devoted to the lemmas needed for the proof in
Section 4. Finally, we will discuss some relevant results (zero location and
distribution, etc.) in Section 5.

2. MAIN RESVLTS

We say measure M belongs to class N (denoted by MEN) if

lim 'PAO) = O.
n-'OO K n

Class N of measures on r is analogous to the Nevai class M(O,1) of



56 LI AND PAN

measures on R [13]. It is well known, by a theorem of Rahmanov (cf. [15]
or [10]), that condition j.t'(O) > 0 a.e. on r implies jJ., E N.

Let
m

B(z) := Il (z - zJ/(1 - zjz),
j~l

and A := IB(O)I/B(O).
We first discuss the ratio of the two leading coefficients.

THEOREM 1. If jJ., EN, then

(1)

(2)

Furthermore, the above limited process is locally uniform for A j > 0, j =
1,2, ... , m, in the sense that, for any 0 > 0 and E > 0, there exists an
integer N = N(o, EO) > 0 such that

I
'Y/I mIl- - Il- <E,
K n j= 1 Izjl

for all n '? Nand A j '? 0, j = 1,2, ... , m.

Remark 1. It is easy to check that

m 1 1
Il- = -- = AB(eo),
j~ 1 Iz;l IB(O)I

where B(oo) := lim z --+x B(z).

Remark 2. Note that the limit value in (2) is independent of {A )r~ l'

while the limit process is locally uniform in A j > 0, j = 1,2, ... , m.

For the ratio of the two orthonormal polynomials, we have

THEOREM 2. If jJ., E N, then

4>n( z)
lim -(-) =AB(z),

n--+oo 'Pn z
(3)

uniformly for Izl '? 1. Furthermore, the limit process is locally uniform for
A j > 0, j = 1,2, ... , m, in the same sense as described in Theorem 1.

Remark 3. From the known results on the asymptotics of 'P/z), we
can use Theorem 2 to obtain the corresponding results for 4>n(z). For
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example, we can have the ratio asymptotics of <P,,(z) from that of <p,,(z)
(d. (7) in Section 2), and if we make a stronger assumption on }L (say
Szego's condition), then we can get better result. We leave the formulation
of these results to the reader.

The following result tells us that <P,,(z) (j = 1,2, ... , m) tends to zero
geometrically fast.

COROLLARY 3. If}L EN, then, for each E E (0,0,

lim zr<p,,( Zj) = 0,
"---+:>0

j = 1,2, ... ,m.

This result will make one guess that $,,(z) behaves like Q(Z)nj~l(Z ­
z) for some Q(z) as n ~ 00 in certain sense. (In Section 5, we shall
discuss more on location and distribution of the zeros of <P" as n ~ 00.)
On the other hand, it is proved in [9] that for each fixed n, we have

lim
Aj---Jooo

j~ 1.2, .... m

m

<P,,+m(z) = '1',,(z) n (z - zJ,
j=l

(4)

locally uniformly for z E C, where 1J',,(z) = /3"z" + '" E.9'" is the nth
orthonormal polynomial corresponding to measure In/,~ I( Z - z)1 2 d}L on
r, i.e.,

k = 0, 1, ... , n, z = e'o

It is useful to get the asymptotics of such orthonormal polynomials. Now,
because of the uniformity in A /s in Theorems 1 and 2, we can obtain the
relative asymptotics of '1',,(z) with respect to <p,,(z).

THEOREM 4. If}L E N, then there holds

. 1J',,( z)
lIm --- = ---:::;m,-----

n---+oo<p,,(Z) n(1-z
j
z)

j=I

(5)

uniformly for Iz1~ 1.

This result turns out to be a special case of theorems in [I1]. We hope
this will shed some light on the general situation.

So far we have always assumed the isolated mass points are all off r,
i.e., Izjl > 1, j = 1,2, ... , m. If we just look for asymptotics outside r
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(6)

then we need only assume Izjl :2: 1 for j = 1,2, ... , m. For example, we
have:

COROLLARY 5. If JJ. EN and Izjl :2: 1 (j = 1,2, ... , m), then

. 'Yn n 1hm -= -

n-+ oc K n Iz,l> I Izjl'

and

uniformly for every compact subset of Iz I > 1.

Here the empty product is defined as of value 1.

3. LEMMAS

We need to introduce some notation. The *-transform Pn*(z) of polyno­
mial Pn( z) of degree n is defined as Pn*(z) = Z nPn(1 Iz). One can check
that, for Z E r, Ipn*(z)1 = !Pn(z)!. The reproducing kernel function Kn is
defined by

n-l

Kn(z;O = L 'PdZ)'Pk(O,
k~O

and by the Christoffel-Darboux formula (d. [5, p. 3]) we have

K (z- Y) = ~'P~U) - ~'PnU) .
n ,!> 1 - z?

In the following, for a set S, we will say "locally uniformly for S" to
mean "uniformly for every compact subset of S."

LEMMA 1. If JJ. EN, then

. Kn(z;O 1
hm - ---

n--+ OO 'Pn(z)'PnU) - z? - l'

locally uniformly for Izi > 1, and I?I > 1.

Proof It is proved in [11, Thm. 4 and its proof] that JJ. E N implies

. 'P~ (z)
hm -(-) = 0,

n-+oc 'Pn Z
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locally uniformly for Iz I > 1. The lemma then follows from the
Christoffel-Darboux formula. I

LEMMA 2. If f.L E N, then

I
, 'Pn+I(Z)
1m =Z,

n->OO 'Pn(z)
(7)

uniformly for compact sets of Iz I ~ 1. Consequently, for each e E (0, 1),

I
' l'Pn(z)1
1m I len

n-+OO Z
=00 , (8)

locally uniformly for IZ I > 1.

Proof Formula (7) is well known (cf. [10] or [15]). For (8), let r > 1
and 8 E (e, 1), then by (7), there exists an integer L > 0 such that

for all n ~ L, and Izi ~ r 1
/(I-0). So, for n ~ Land Izi ~ r 1

/(I-0),

Now formula (8) follows from the above inequalities and the fact that
'PL(Z) '" 0 for Izl ~ 1. I

LEMMA 3. For all n ~ 0, there holds

Proof This lemma is the consequence of the extremality of the monic
polynomial K;; l'Pn(z) (cf. [17, Thm. 11.1.2, p. 289]);

1 1 f 22" = min -2 Izn + p(z)j df.L
K n p E.9'n _ J 1T'

1 fjcI>n(Z)j2 1 f 2 1
.$ - -- df.L.$ 2" IcI>A z) I dv = -2' I

21T' 'Yn 'Yn 'Yn
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LEMMA 4. For m distinct points z I' Z2"'" zm outside the unit circle, the
matrix

is non-singular.

Proof Let x = (XI' X2 , ••. , Xm)l E em, and Tmx = 0, then we need to
show x = O. To do so, define

Then F(z) can be written as p(z)/n;:Jzjz - l) with p E,9'm_I' How­
ever, Tmx = 0 implies F(zk) = 0, k = 1,2, ... , m, and so P(Zk) = 0,
k = 1,2, .. _, m; hence p(z) == O. Thus F(z) == 0, which implies that x = 0
since {I/(ZjZ - l)}/: 1 forms a set of linearly independence function set.

I
LEMMA 5. For m distinct points Zl' Z2"'" zm outside the unit circle, let

B( z) be defined as in (1), then there exist a unique set of non-zero complex
numbers r" r2 , ••• , rm such that

1 m r
j

B(z)==+ L--
B(O) j=1 1 - zjz

(9)

Proof The existence of the above partial fraction representation of
B( z) is obvious. The uniqueness follows from the linear independence of
the set {(1 - ZjZ)-I>r:I' Finally, that none of the r/s is zero follows from
comparing the poles on both sides of (9). I

4. PROOFS OF MAIN RESULTS

Now we are ready to prove our theorems.

Proof of Theorem 1. We need to show the existence of the limit in (2)
and calculate the value of the limit.

By Lemma 3, every subsequence of {'Yn/Kfl}~=O contains a convergent
subsequence. Let R ~ 0 be a limit point of this sequence, and A ~

{O, 1,2, ... } satisfy

lim 'Yn/Kn = R.
fl--->OO
flEA

( 10)
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Note that the orthonormality of 'Pn(z) yields (on writing <Pn(z) =

CYn/Kn}'Pn(Z) + p(z}, with P E9"n_l)

On the other hand, the orthonormality of <Pn gives (on writing 'Pn(z) =

(Kn/Yn)<Pn(z) + q(z), with q E9"n_l)

So, we have

m

L Aj<Pn(zj)'Pn(Zj).
j~l

( 11)

We now consider the limit behavior of the summation on the right side as
n ~ 00 and n EA. Note that <Pn(z) - (Yn/Kn)'Pn(Z) E9"n_j, so according
to the reproducing property of the kernel function Kn(z; n (d. [17]) and
orthogonality of 'Pn(z) and <Pn(z), with ( = e i8

,

= 2~!(<Pn(O - ::'Pn(O)Kn«;Z)dJL(B)

1 m

= -2 !<pn«) Kn«; z) dJL(B) = - LAj<Pn(zj)Kn(zj;z)
~ j~l

m ( _ (~Z - l)Kn(zj; Z)) 1
= - E Aj<Pn(zj)'Pn(Zj)'Pn(z) ,

j=1 'Pn(Zj)'Pn(z) zjz - 1

and so

640/79/1-5
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By Lemma 1, we can write

-- (~Zk - 1)Kn( Zj; zd
AjcfJn( Zj)'P,,( Zj) --'--'--====---'---­

'P,,( Zj ) 'P" ( Zk)

= A jcfJ,,(zj)'P,,(zj)(1 + 0(1)) =: Xj(1 + 0(1)),

as n ~ 00, uniformly for j, k = 1,2, , m. On the other hand, since
AjlcfJ,,(z)12 :0;; flcfJnl2 dv = 1, j = 1,2, , m, we have

cfJ (z)
lim n J = 0
n~oo 'P,,( Zj) ,

by Lemma 2, and the limit is locally uniform for the choice of A j > 0,
j = 1,2, ... , m. So, letting Z = Zk' k = 1,2, ... , m, in (12) and using the
above limit relations, we can obtain

where 1:= (1, 1, ... , 1)" Tm is defined as in Lemma 4, X:=
(XI' X z,·.·, Xm )" and the first 0(1) is independent of A/s and
the second 0(1) is locally uniform for A j > 0, j = 1,2, ... , m. So, by
Lemma 4,

y
X(1 + 0(1)) = ~T';:;ll + 0(1).

K"

However, letting Z = Zk' k = 1,2, ... , m in (9) will yield

(13)

k=I,2, ... ,m,

i.e.,

and so

Thus, by (13)
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and so we have, by use of (0),
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lim X j = lim AjlPn(zj)(f'n(zJ = RB(O)rj,
n-+x n---+oo
nE'i1 nEA

j= 1,2, ... ,m. (14)

Now letting n ~ 00 and n E A in (10, we see that R cannot be zero and

1 _ m _( 1 )
- - R = RB(O) L rj = RB(O) B(O) - = .
R j=l B(O)

Hence R = IB(O)1- 1
• Since R is an arbitrary limit point of h'n/Knl~~o,we

see that the limit limn ~oo 'Yn/Kn exists and is equal to IB(O)[-l. The local
uniformity for A j > 0, j = 1,2, ... , m, and the limit process is evident
from our proof. The proof of the theorem is complete. I

Proof of Theorem 2. From (2) and the Christoffel-Darboux formula
we can write

_c1Jn_(Z_) = 'Yn _ [,Ajc1Jn(Zj)(f'-n-(Z-j)[((f'~((Zj» )_(f'~_(Z_» _ 1] 1_ .
(f'n(z) Kn j=l (f'n zJ (f'n(z zjz 1

(15)

So together with (9) this gives for Iz I ~ 1

where we have used the fact that 1(f'~(z)/(f'n(z)1 s 1 for Izi ~ 1. Now
using (14) (by Theorem 1, A there can be taken as {I, 2, 3, ... }, R =

IB(O)I-\ and so the limit values in (14) are Arj , j = 1,2, ... , m) and (6) we
have

lim!c1Jn(Z) -AB(Z)!=O,
n--+'Xl (f'n( z)

uniformly for Izi ~ 1 and locally uniformly for A j > 0, j = 1,2, ... , m.
I
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Proof of Corollary 3. The proof follows from (8) in Lemma 2 and (14)
in the proof of Theorem 1. I

Proof of Theorem 4. Write

<P,,+m(Z)

'P,,( Z)

then, by Theorem 2 and (7)

<P,,+m(Z) 'P,,+m(Z)

'P,,+m(Z) 'P,,(Z) ,

( 16)

uniformly for Iz I ~ 1 and locally uniformly for A j > 0, j ~ 1,2, ... , m.
Now, on letting A j -> oc for j = 1,2, ... , m and using (4), we get

m

0/,,( z) n (z - Z j)
j~ 1

lim------­
'P,,( z)

which implies (5). I

m

Az m n (z - Zj)
j= I

m

n (1 - zjz)
j~ I

Proof of Corollary 5. Let us first consider the case when m = 1 and
ZI E T. As in the proof of Theorem 1, by the reproducing property of the
kernel function K"(z; 0 and the orthogonality of both 'P"(z) and <p"(z).

K" 1 J(K" )-<P,,(z) - 'P,,(z) ="2 -<P,,(O - 'P,,(O K"U; z) dJ.L(O)
y" rr y"

( 17)

Letting Z = Z I in (17) gives

Solving for <p"(z I)' and then plugging the result into (17), we can obtain

Using the Christoffel-Darboux formula and Lemma 1, the numerator of
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the fraction on the right side can be written as A.I'Pn(z\)/Z'Pn(Z)(Z\Z ­
0- 1(1 + 0(1» locally uniformly for Iz I > 1 as n -'> 00. So

Kn <Pn(z) = 1 _ A11'Pn(zj)l
z

1 + 0(1)

Yn'Pn(z) I+A 1KAz,;zl) zl z - 1

From Thm. 4 in [11], we know that l'Pn(z\)lz/Kn(zt; Zl) -'> 0 as n -'> 00

since Z \ E r. Thus

locally uniformly for Iz I > 1. Letting Z -'> 00 in the above equation, we get
limn-->ocKnlYn = 1. Thus limn-->oc<Pn(z)/'P/z) = 1, locally uniformly for
Izi > 1.

Now note that measure II is supported on r in this case. We claim
liEN. In fact, setting z = 0 in (18), using the Christoffel-Darboux
formula, and then rearranging the terms, we can write

Using the facts that l'Pn(z.)lz/Kn(z.; Zj) -'> 0 as n -'> 00 and
1'P:(z,)/'Pn(ZI)1 = 1, we see that limn~" <Pn(O)/Yn = 0, which verifies our
claim.

The general result now follows from an induction argument based on
the previous paragraph and Theorems 1 and 2. We omit the details since
the argument is straightforward. I

5. RELATED RESULTS

Suppose JJ- belongs to N throughout this section. We now discuss some
properties of 4>n(z) implied by the main results.

First, from the general result on location of zeros of orthogonal polyno­
mials (see, for example, [16, Thm. 2.2]) we know that all zeros of 4>n( z) lie
in the interior of the convex hull of r u {zl' zz,"" zm}' Using the main
results in Section 2, we can say a little more specifically about the location
of zeros of <Pn( z).

PROPOSITION 1. For all n large enough, <Pn(z) has exactly m zeros
outside r tending, respectively, to ZI' zz,"" Zm from the interior of the
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Izi < I,

convex hull of r u {z l' Z 2' ... , Zm}, and the other n - m zeros all lie in the
interior of r.

Proof Note that AB( z) has no zeros in Iz 1~ 1 except at
{Zl' Z2"'" z"J If there exists an infinite set it of positive integers such
that for each n E it, fP,,(z) has at least m + 1 zeros in Izi ~ 1, then in
view of Theorem 2 and Hurwitz's theorem, exactly m of them tend
respectively to z I' Z2' ... , Zm' Then the rest, being contained in the
bounded set (the convex hull of r U{ZI' Z2"'" zm})' must yield at least
one limit point, say 1;. Point I; must be different from Zj' j = 1,2, ... , m,
and II;I ~ 1. Now Theorem 2 would imply AB(O = 0, a contradiction. I

What can we say about the distribution of those zeros of fP/ z) lying
inside r? The answer generally depends on the size of Iz) -I, j =

1,2, ... ,m, and p:= limsup,,~xl'Pn(O)/Knllln.We prove one special re­
sult on this in the following. The general case remains open. We need to
introduce the so called Szego function associated with measure f,L: Let
~((J) dO denote the absolute continuous part of measure dj.L(O), then, if
f log ~((J) dO > - DO,

{
I rr 1 + ze - 10 }

D( z) := exp -f log j.L'( 0) -10 dO ,
47T -Irr 1 - ze

is called the Szego function associated with j.L. It is well known that (see,
for example, [4, Sect. 22]) L~~ol'Pn(O)/KnI2 < 00 implies that the Szego
function exists. So p < 1 guarantees the existence of D( z). Furthermore,
it is proved in [14, Thm. 1] that p < 1 implies (a) {D(Z)}-l has an analytic
continuation to the disk Izi < I/p, (b) K n ~ K *- 0 as n - 00, and
(c) 'P:( z) is uniformly bounded on Iz 1= I/r for every r > p. These facts
will be used in the proof of the following proposition, and we will refer
them as fact (a), fact (b) and fact (c), respectively.

Denote T:= maxIsjsm{lZjl-I}.

PROPOSITION 2. (i) For each (T> max{T, p}, the number of zeros of fPn

lying in Iz I ~ (T is bounded independently of n.

(ij) Assume p < T < 1, and Izil = T-
1 < Izjl, j = 2, ... , m. if D(zl)

*- 00, then there is a subsequence ofpositive integers it such that, in the weak
star topology,

lim w( fPn ) = wr '
n~'"

nEA

where measure w( fP,,) is the zero counting unit measure of polynomial fPn

and W r is the uniform measure dO/(27T) on the circle Izi = T.
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Proof From (15), using the *-transform we can write

[( If'~(Z;)) ] zx (.) If'Az) - 1f'~(Z) -.-_-.
1f'/1 Z) Z) Z

Note that, when J.L E N, the ratio asymptotics (7) implies

lim jlf'(z)j 1//1 = Izl,
n---+ oo

67

(19)

(20)

uniformly for Izi ~ 1. If Iz)1 < lip, then If':(z) is bounded by fact (c),
and so (20) gives

I

*() 1

1/

/1' I1f'/1 z) z
lim sup (.) 1f'/1(z) ::; ~ ,

/1---+00 1f'/1 z) z)
(21)

uniformly for Izi ~ 1. If Izjl ~ lip, then, for every r > p, the Bernstein
inequality would yield 11f'~(z)1 ::; (rlzjl)" maxlzl=l/TIIf'~(z)l, and so by
fact (c) and (20)

[

*() [1
/ /1'P/1 Zj

lim sup (.) 1f'/1(z) ::; Irzl,
n -+00 'P/1 z)

uniformly for Iz 1 ~ 1.
Hence, for j = 1,2, ... , m, we always have

(22)

locally uniformly for 1 ::; Izi < liT. So, with (14) and fact (c), we see (19)
implies that tP:(z) is locally bounded in Iz I < l/r. But tP:( z) converges
to AB( z){D( z)} - I in Iz I ::; 1. This is because of Theorem 2 and the fact
that If'~(z) converges to {D(Z)}-I (cf. [14, Thm. 1]). So tP:(z) converges to
AB(z){D(z)}-l locally uniformly in Izi < liT. For each compact subset
A in Izi < liT, AB(z){D(z)}-1 has only finitely many zeros in A, so, by
Hurwitz's theorem, the number of zeros of tP:(z) in A is bounded
independent of n. So part (i) of the proposition is established.
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Note that, with fact (c), (14), (21), and (22), Eq. (19) also yields

n-->oc

(23)

uniformly for Iz I = liT.
Next, we claim that

. I III" 1hm sup <P,,(O) = -,-I'
n-HX! Zl

Indeed, letting Z = 0 in (15) gives

<P,,(O) cp,,(O) ( m K" __)
-- = -- 1 + 1: -Aj<P,,(zj)CP,,( zJ

'Y" K" j~l 'Y"

As above, we can show that

limsupl cp~(Zj) III" .::; p,
,,-->OC cp,,(zJ

I
*( .) III" 1. cp" z)

hmsup '::;-,
n -->00 cp,,( zJ Izjl

(24)

(25)

(26)

(27)

if Izjl < lip. In fact, we now prove that, when j = 1, the equality holds in
(27). We need only to show limsuPn-->oolcp~(zl)II/" = 1. From the uniform
boundedness of cp~(z) on Izi = Iz 1 \, it follows that limsup,,-->oolcp~(zl)II/"

.::; 1. Suppose, to the contrary, that the lim sup is strictly less than 1. Then,
Zl must be a zero of the limit function lim,,-->oo cp~(z) that is equal to
{D(z)} -\ (cf. [14, Thm. 1]), contradicting to the hypothesis of the theorem.
Now, using the assumption that z\ is the only point among {ZI' Z2"'" zm}
satisfying Izll = liT < lip, and from Theorem 1, (14) in the proof of
Theorem 1, (25), (26), and (27), we can write

I
<P,,(O) I= I(_r_1 + 0(1)) cp~( Zl) I+ o(p"), (28)

'Y" B(O) CP,,(ZI)

as n ~ 00. As r 1 0# 0 (Lemma 5), together with the remark on the validity
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of equality in (27) for j = 1, we conclude that
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(29)
. I<Pn(O) Il/n 1

hmsup -- =-
n-->oo rn IZI'·

Since rn = (rnIKn)Kn -) IB(O)I-IK* 0 as n -) 00 (Theorem 1 and fact
(b»), we see that limn~"" ryn = 1, so (29) implies our claim (24).

Finally, let A be a subsequence of positive integers such that
lim n~J<Pn(o)ll/n = l/lz l l, and consider P/z) := <P:(z)1 <Pn(O). In view

nE,\

of (23) and (24),

( )

lin

lim sup max Ipn(z)1 ::;; 1/7".
n-->oo Izl=I/T
nEA

(30)

This, together with part (i) just proved, verifies that for the sequence of
monic polynomials {Pn(z)}n E ,\ and K = {z I Iz' = liT} the hypotheses of
Lemma 3.1 in [12] are satisfied. From this, part (ii) of our proposition then
follows. I

Using a similar argument, one can prove the following result.

PROPOSITION 3. If P < 1 and Iz(1 = 1 < 'zjl, j = 2, ... ,m, then, in
the weak star topology,

lim w( <Pn ) = WI.
n~oo

Proof First, by Theorem 2, limn~xl<Pn(z)lcpn(z)1 = 1, uniformly on
r. Now, since limn~""lcpn(z)ll/n = 1 uniformly on r, we get
limn ~""I<Pn(z )\l/n = 1 or

lim 1<P:(z)ll/n = 1,
n->oc

(31 )

uniformly on r. Next, we show that limn~""'<Pn(O),lln = 1. The key is that
the equality in (27) for j = 1 holds when Iz (I = 1 without any condition on
the Szego function. In fact, Icp~(z)jCPn(z)1 = 1 on r, so we have
limn~""lcp~(zl)/cpn(zl)ll/n = 1. With this in the place 0[(27) for j = 1, we
can proceed as in the proof of part (ij) of Proposition 2 to show Pn(z) :=

<P:(z)/<Pn(O) satisfies

lim Ipn(z)ll/n = 1,
n-->oo

uniformly on r. This, together with part (i) of Proposition 2, verifies all
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hypotheses of Lemma 3.1 in [12] with (Pn(z)} and K = r. The proof is
complete. I

It is interesting to notice the implication of Proposition 3 for the zeros
of polynomials orthogonal on r (d. [12, 14, 16]). For the uniform measure
dO/(21r) on r, all zeros of its orthogonal polynomial zn lie at z = o.
Proposition 3 tells us that by adding one mass point, say doo(O), the
majority of the zeros of orthogonal polynomial will be attracted to r. This
is the case since the nth monic orthogonal polynomial corresponding to
dO /(211") + doo(O) is given by (cf. (IS))

+ z + Z2 +
zn - -----------

n + 1

and it is straightforward to show that all zeros of this polynomial are
contained in Izi ~ (2n + 3)-I/n. This zero distribution can also be veri­
fied by Thm. 2.3 in [12].
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